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ABSTRACT

The numerical experiments, carried out through the use of the vorticity-

stream function equations and their finite difference form, on co-existing

flows (sinusoidal or non-sinusoidal oscillation plus steady mean flow) are de-

scribed. A third-order in time, second-order in space, three-level predictor-

corrector finite-difference scheme has been used. The Poisson equation for

the stream function was solved by a Fast Poisson Solver based on the High

Order Difference Approximation with Identity Expansion (HODIE) and the

Fast Fourier Transform (FFT) methods provided by the IMSL mathematical li-

brary. The results have revealed, for the first time, the existence of a very in-

teresting wake comprised of three rows of heterostrophic vortices at certain

Keulegan-Carpenter numbers and relative current ratios. The existence of

such a street has been vindicated by physical experiments.
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I. INTRODUCTION

The efforts to arrive at coherent descriptions of the interactions between

oceans and the structures inserted therein have a long history. The past two

decades have seen an explosion of interest in the broad subject of ocean

hydrodynamics. As a result of this activity, there is arising an improved and

more realistic understanding of the physical characteristics of some time-

dependent flows about bluff bodies and their mathematical formulation. On

the one hand attention has been focussed on controlled laboratory

experiments which allow for the understanding of the separate effects of the

governing and influencing parameters, and on the other hand on

mathematical and numerical methods which allow for the nearly exact

solution of some wave loading situations.

The hydrodynamic loading situations which are well understood are

those which do not involve flow separation. Thus, they are amenable to

nearly exact analytical treatment. These concern primarily the determination

of the fluid forces on large objects in the diffraction regime where the

characteristic dimension of the body relative to the wave length is larger

than about 0.2. The use of various numerical techniques is sufficient to

predict accurately the forces and moments acting on the body, provided that

the viscous effects and the effects of separation for bodies with sharp edges

are ignored as secondary.

The understanding of the fluid-structure interactions which involve

extensive flow separation and dependence on numerous parameters such as



Reynolds number, Keulegan-Carpenter number, relative roughness, relative

motion of the body, proximity effects, hydroelastic response, etc. is far from

complete (Sarpkaya & Isaacson 1981). There are several reasons for this.

First, although the physical laws governing the motion (the Navier-Stokes

equations) are well understood, valid approximations necessary for numerical

and physical model studies are still unknown. Even the unidirectional

steady flow about a bluff body remains theoretically unresolved. Much of

our understanding of vortex shedding behind bluff bodies came from steady-

flow experiments, highly idealized models, and limited numerical solutions.

Most of the numerical studies based on the use of the Navier-Stokes

equations and some suitable spatial and temporal differencing schemes are

limited, out of necessity, to low Reynolds number flows. A second reason

why progress has been slow is that the bluff body problems involving wake

return are an order of magnitude more complex and there has been only a

handful of limited applications of the methods based on Navier-Stokes

equations.

The formation of a wake gives rise not only to a form drag, as it would

be the case if the motion were steady, but also to significant changes in the

inertial forces. The velocity-dependent form drag is not the same as that for

the steady flow of a viscous fluid, and the acceleration-dependent inertial

resistance is not the same as that for an unseparated unsteady flow of an

inviscid fluid. In other words, the drag and inertial forces are

interdependent as well as time-dependent. These effects are further

compounded by the diffusion and decay of vortices and by the three-

dimensional nature of vorticity due to turbulent mixing, finite spanwise

coherence, and the random nature of the vortices (which give rise to cycle-to-

2



cycle variations and numerous flow modes even under controlled laboratory

conditions). The stronger and better correlated the returning vortices, the

sharper and more pronounced the changes are in pressure distribution on

the body and in the integrated quantities such as the lift, drag, and inertia

coefficients.

The numerical prediction of the fluid-structure interaction, through the

use of finite-difference, finite-element, and discrete-vortex methods, has

attracted considerable attention during the past two decades and produced

laminar flows difficult to measure and turbulent flows hard to verify. The

reasons for this are relatively simple. Numerical solutions based on the full

Navier-Stokes equations are not stable at high Reynolds numbers and the

instability is non-linearly related to the characteristics of the base flow, the

input parameters, and the discretization conditions. Also, the real flow at

the computed Reynolds numbers may be turbulent, at least in some regions

of the flow, and the numerical experiment does not imitate the physical

experiment. Furthermore, the observed physical and numerical instabilities

do not necessarily correspond to each other. Assuming that the calculations

for a given flow are carried out at sufficiently small Reynolds numbers,

where the flow is known to remain stable and laminar, one quickly discovers

that it is practically impossible to measure, to any credible degree of

accuracy, most or all of the predicted quantities (except the Strouhal number

and the photographs of the flow patterns). One may also raise the question

as to whether the two-dimensional numerical calculations could or should

ever be compared with physical experiments attempting to mimic two

dimensionality through the use of various passive or active devices (e.g., end

plates on cylinders).

3



Evidently, one's view of the state of the numerical modelling depends to

a large extent on one's objectives. For example, if the objective is to obtain

some approximate answers and flow kinematics, one might be perfectly

satisfied with the existing codes. If the objective is to match the measured

and calculated results (e.g., lift and drag coefficients), one might achieve the

desired objective by fine tuning a number of model parameters (e.g., the

order of approximation of the velocity and/or vorticity gradients, particularly

near the wall, mesh size, time step, type of discretization, outer boundary,

just to name a few). If one's objectives are to perform numerical experiments

for sake of numerical experiments, with no concern with the compatibility of

the numerical and experimental results, then one can objectively asses the

model instead of attempting to attribute to it artificial powers of prediction.

As far as the turbulent flows are concerned, some or all of the

predictions of the numerical calculations for a given flow depend on the

closure model used. Some models do better than others for some flows and

worse than others for other flows. No model, however sophisticated, has a

corner on the numerical market. Evidently, the solution of unsteady

turbulent flows at sufficiently high Reynolds numbers will have far reaching

theoretical and practical consequences. As noted above, this is not yet the

case, and the solutions must necessarily be confined to cases where the

accurate prediction of physical experiments is not the real objective.

However, it is hoped that even the approximate solutions will have enough

information to elucidate the physics of the phenomenon.

It is clear from the foregoing that the objectives of the present

investigation are to carry out extensive numerical experiments through the

use of the vorticity-stream function form of the Navier-Stokes equations and

4



their finite difference form, on co-existing flows (sinusoidal or non-sinusoi'dal

oscillation plus steady mean flow). The expectations are that the results will

point out the strengths and weaknesses of the code, for the particular type of

formulation used, explain the reasons between the various numerical

predictions of the same problem, and, hopefully, shed some light on the

physics of flows heretofore uncalculated.
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I. BACKGROUND STUDIES

A finite difference analysis of the Navier-Stokes equations for a

sinusoidally-oscillating ambient flow about a circular cylinder at K (Keulegan-

Carpenter Number) = UmT/D = 5 (Re = 1000) and K = 7 (Re = 700) has been

attempted by Baba & Miyata (1987). Their results have shown that the

calculations can be carried out only for short times (less than two cycles of

flow oscillation) with a non-super computer. Murashige, Hinatsu and

Kinoshita (1989) have used a similar method to analyze three cases (K = 5, 7,

and 10) at higher Reynolds numbers around 104. The flow was perturbed

by artificial means to trigger an asymmetry. At K = 10, a transverse vortex

street appeared, in agreement with experimental observations. The

numerical simulation of steady flow past a circular cylinder undergoing in-

line and/or transverse oscillations through the use of two-dimensional

unsteady Navier-Stokes equations was undertaken by Lecointe et al. (1987)

for relatively small amplitudes (A/D = 0.13). Justesen (1991) presented

extensive results obtained from a numerical solution of a vorticity-stream

function formulation of the Navier-Stokes equations for the flow around a

circular cylinder in planar oscillating flow at small Keulegan-Carpenter

numbers in the subcritical Reynolds number range. Justesen introduced a

straining parameter "a" in order to better resolve the large gradients near the

cylinder surface. This is in addition to the logarithmic straining, commonly

used as part of the transformations, for a better resolution of the gradients

near the body. Evidently, Justesen's transformation for a = 0 defaults to the
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logarithmic straining. However, "a" becomes another disposable parameter,

dependent on at least K and Re. Justesen had to choose judiciously the

value of the straining parameter for each K in order achieve drag and inertia

coefficients in satisfactory agreement with those obtained experimentally. A

systematic numerical variation of the governing parameters for an arbitrary

U(t) is extremely difficult.

The in-line oscillations of a cylinder in uniform flow (or the sinusoidally

oscillating flow with a steady mean flow) has been the subject of intense

interest in recent years (see, e.g., Sarpkaya & Isaacson, 1981 and Sarpkaya &

Storm, 1985) in connection with the understanding of the behavior of hot-

wire anemometers and the fluid loading of structures subjected to currents,

gusts and other types of unsteady flows. The biassing of the shedding of the

vortices by the current causes profound changes in both the drag and inertia

coefficients, relative to their no-current values. The mobile separation points

undergo large excursions, as much as 120 degrees during a given cycle of

oscillation over a circular cylinder (Sarpkaya and Butterworth, 1992). These

effects are further compounded by the diffusion and decay of vortices and

by the three-dimensional nature of vorticity due to turbulent mixing, reduced

spanwise coherence, mutual-induction instability, and the random nature of

vortices which give rise to cycle-to-cycle variations and numerous flow

modes even under controlled laboratory conditions. It is because of these

reasons that the present work is dedicated to the numerical analysis of such

flows.
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III. NUMERICAL REPRESENTATION

A. COMPUTATIONAL METHOD

Here only a brief description of the computational method is presented.

A more in depth description is given by Wang (1989) and Putzig (1991).

The fluid is assumed to be two-dimensional, incompressible and vis-

cous. The governing equations for the solution are the Navier-Stokes equa-

tions, with the stream function and the vorticity as independent variables.

To achieve a higher density of mesh points near the cylinder surface, the

computational domain is transformed from the physical plane (polar coordi-

nates, see Figure 1) to a rectangular plane (Figure 2). In the rectangular

plane, the mesh is maintained at a uniform grid spacing. It is necessary to

have more mesh points closer to the cylinder surface because in this region

the gradients of both the vorticity and the stream function are the largest.

A third-order in time, second-order in space, three-level predictor-correc-

tor finite-difference scheme is used to solve the vorticity-transport equation.

A Fast Poisson Solver based on the High Order Difference approximation

with Identity Expansion (HODIE) and the Fast Fourier Transformation (FFT)

provided by the IMSL mathematics library is used to solve for the stream

function.

The unsteady Navier-Stokes equations in the polar coordinates, as de-

fined by the vorticity transport equation and the vorticity/stream-function

equation are,
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± I-a a a ap) 1 - vV2o (1)
at -r LTr ) a,r

and

V 2 ip o (2)

where

S + + a2 (3)
ar2  rar r2 ar2

w and V are the vorticity and the stream function, v is the kinematic viscosi-

ty, t is the time and, r and 0 are polar coordinate directions (see Figure 1).

The velocity components in the r and 0 directions are defined by

u 1 alp and v . . (4)

The boundary conditions for the physical problem are:

(1) no slip and zero normal velocity on the surface of the cylinder

V al on r = R (5)

and (2) the potential flow at infinity is defined as

V - U(r-- )sinO (6)
r
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and w - 0 at r = oo. U is the external flow and R is the radius of the cylin-

der.

The coordinate transformations required to go from the physical domain

to the computational domain are:

r - R-e(a ) and 0 - al (7)

where R is the radius of the cylinder and 'a' is a transformation parameter.

The transformation of the non-dimensionalized vorticity-stream function

equations and their finite difference form through the use of the central dif-

ference approximation for vorticity and a two-step, three-level, predictor-cor-

rector scheme, with a third order accuracy in time, are described in detail in

Wang (1989), in Fredrickson (1990) and in Putzig (1991) and will not be re-

peated here.

B. CALCULATION OF THE FORCE COEFFICIENTS

The in-line and transverse force coefficients are determined from the com-

bined contributions of the shear and pressure forces acting on the cylinder.

The viscous forces are calculated from Ts - w. The total in-line force then

reduces to

2n 2n

FIL -f(Ps cos (0) RdO) -f .wsin (w) RdO (8)
0 0

and the total lift force as

10



2a 21t

FL -f(Ps .sin (0)Rd ) - f[w cos (w) Rd . (9)
0 0

After dividing the in-line and the lift-force equations by (0.5pU2D) and de-

fining

2 2(ps - p.)P- P 2(10)

the force coefficients reduce to

2a 2a1 -- 2
CIL 2f (Ps. cos(0)RdO) R f Rsin (o)Rd0 (11)

0 0

and

2n 2n

sin(0)RdO)- f. . cos()Rd (12)C _ _f (P .si (fRd )- -s(w)R

0 0

The pressure coefficient is determined from the Navier-Stokes equations

in terms of dimensionless vorticity. Once integrated with respect to 0, one

has

PS(0) - TS(0) +-ff(T) dO . (13)
0 r-1

Equation (13) is substituted into equations (11) and (12) to determine the nu-

merical scheme for the in-line and transverse force coefficients,

11



2 [T~ 1

" e(-") dO cos (0) + Usin (0) dO (14)
0 r- J j

and

CL -Fe' f T M)d6] sin(O) -cos(O) dO (15)

The radial derivative of the vorticity on the surface of the cylinder, ap-

pearing in Equations (14) and (15), is determined through the use of discrete

pointwise approximations of various orders, ranging from second to tenth or-

der. For a second order approximation, one has

(_i -3oi+ 4wi+ 1 - 2i+2 + o (A 2  (16)

For higher order polynomials Equation (16) may be written as

~i, - Ao i + Bw. + - C i +2 + E wt i +4 + ......
"'_', =+ O(A ") (17)

kar dr-I A

in which the coefficients A - K are given in Table 1 below.
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TABLE 1: COEFFICIENTS OF THE POLYNOMIAL IN EQ. (17)

n=2 n=4 n=6 n=8 n=10

A -3/2 -25/12 -49/20 -761/280 -7381/2520

B 2 4 6 8 10

C -1/2 -3 -15/2 -14 -45/2

D 4/3 20/3 56/3 40

E -1/4 -15/4 -35/2 -105/2

F 6/5 56/5 25V.5

G -1/6 -14/3 -35

H 817 120/7

I -1/8 -45/8

J 10/9

K -1/10

13



C. CALCULATION OF THE DRAG AND INERTIA COEFFICIENTS

If one were to associate the total force with a velocity-square-dependent

drag force and an acceleration-dependent inertial force then the coefficient as-

sociated with the latter may be interpreted as some measure of the added

mass. But one must bare in mind that such a decomposition is far from be-

ing unique.

It has been customary to express the fluid force acting on a body mov-

ing in a fluid otherwise at rest as

1 uud
F(t) .- .pCuAp{Uo+U(t)}I{Uo+U(t) } +p kV4t-U(t) (18)

where U. represents the steady velocity; U(t), the time-dependent oscilla-

tions; Cu , the Fourier-averaged drag coefficient and ku , the Fourier-aver-

aged added-mass coefficient. It is customary to use an inertia coefficient Cm

for a fluid in motion about a body at rest through the use of Cm - I + k.

M ~ii

The Fourier averages of the drag and added-mass coefficients over a peri-

od of T may be calculated by multiplying both sides of Equation (8) once

with U(t) and once with dU/dt to yield

T

2fF (t) U (t) dt

S T0 (19)

PAPfI {U o + U (t)} I {U0 + U(t) } U (t) dt
0

and
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T

(Cm1 u 0 (20)

(C m Of - 1 k(t)1 dt
0

which may be evaluated readily, provided that sufficiently reliable data are

available for F(t), Uo, U(t), and dU(t)/dt.

A simple dimensional analysis of the flow under consideration shows

that the time-averaged force coefficients (Cu and ku) are functions of a rela-

five amplitude or Keulegan-Carpenter number, Mach number, Reynolds num-

ber, and a parameter involving U. (e.g., Uo(T/D) or Uo/[U(t)]max) .

There are numerous possibilities regarding the definitions of the relative am-

plitude or Keulegan-Carpenter number and the Reynolds number. The pur-

pose of the search for a more suitable Keulegan-Carpenter number and/or

Reynolds number is to enhance the correlation of the data to reduce the num-

ber of the governing parameters, possibly eliminating U0 (T/D) as an inde-

pendent parameter. The list of possible Reynolds numbers and Keulegan-

Carpenter numbers is long and will not be given here. Suffice it to note that

the two force-coefficients for the flow about a cylinder may be written as

(cu - fi(K,Re , VK) (21)

or as
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k ) f (K+,Re+,VK) (22)
ii

in which

UmT UmD UoTK -- '-' Re- -m . VK .-

Urn) D

U UoD
Re+ = Re (1+ - Re+--. (23)

The purpose of the present calculations was not to provide a detailed

comparison between the measured and calculated forces but rather to at-

tempt to establish a relationship between the shedding of vortices and the rel-

ative magnitude of the current. The particular values of K and Vr chosen for

the calculations (K = 4 to 6, Vr = 0.0 - 1.2) was one for which some experi-

mental data were available at comparable P, Re, and Vr values.
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IV. DISCUSSION OF RESULTS

The numerical experiments were carried out through the use of a VAX-

2000, a VAX-3520, a CRAY Supercomputer and the IMSL Mathematical

Library. The solution procedure and technique have been validated for

several types of unsteady flows, i.e., impulsively-started, suddenly-stopped,

and uniformly-decelerated flows before applying it to co-existing flows

(oscillatory flow or sinusoidally-oscillating flow with mean velocity).

Excellent agreement with flow visualization and experimentally determined

drag and lift coefficients has been obtained for both symmetric and

asymmetric wake solutions. It is this validation that led to the exploration of

the characteristics of sinusoidally- and non-sinusoidally -oscillating flows

superimposed on a mean velocity.

The sinusoidal oscillation was specified by U = U0 + Umsin (2nt/T) in

which U. is the steady mean velocity and Um is the amplitude of sinusoidal

oscillations. The non-sinusoidal oscillation was represented by

U = Uo + Ur .[320166cos (0) - 76230cos (30) + 22869cos (50)

- 5445 cos (70) + 847cos (90) - 63cos (110) ]/(262144) (23)

in which 0 - ot - ar/2. This profile, without the mean velocity U0, was first

used by Justesen and Spalart (1990) in connection with the turbulence

modeling of oscillatory boundary layers. They have referred to it as the

"steep" velocity variation since it yields a quasi-steady interval and an

interval with a very large pressure gradient in each half-cycle (see Figure 3).

17



As noted by Jensen and Spalart, the coefficients in equation (23) were

determined by requiring that the first ten derivatives be zero at t = 0.

The flow was perturbed by changing the direction of the ambient flow

sinusoidally (with an amplitude of one-half of a degree) during the first cycle

of the oscillation. The amplitude of the sine wave was the only free

parameter. It is worth noting that this type of disturbance gradually returns

the perturbed quantity to its initial state.

Numerical experiments have been carried out in the range of K = 4 to 6,

= 200, Re = 800 to 1200, At- 0.002 and for various values of

Vr  Uo/U m, as shown in Table 2.

TABLE 2: THE RANGE OF THE GOVERNING PARAMETERS

Vr/ K= 4 5 6 7 8

0.0 X

0.20 X*

0.40 X X*

0.50 X X

0.60 X* X X* X X

0.65 X

0.70 X* X*

0.80 X X

1.00 X

1.20 X

*The calculations have been carried out for both the sinusoidal

and non-sinusoidal oscillations at the indicated K and Vr values.

18



Evidently, this is a rather limited exploration of a highly complex

problem and requires much more numerical and experimental work. The

purpose of the present calculations was not to provide a detailed comparison

between the measured and calculated forces but rather to attempt to

establish a relationship between the shedding of vortices and the relative

magnitude of the current.

Figures 4 through 9 show at time t/T = 9.0, for K = 4 and Vr = 0.4, the

in-line force, the transverse force, a close-up view of the streaklines, the

complete streaklines, the streamlines, and the vorticity field, respectively;

Figures 10-15 show the same plots, for K = 4 and Vr = 0.5; Figures 16-21

the same plots, for K = 4 and Vr = 0.6; Figures 22-27 show similar plots, for

K = 4 and Vr = 0.65; Figures 28-33 show the corresponding plots, for K = 4

and Vr = 0.7; and Figures 34-39 show the same plots, for K = 4 and Vr = 0.8.

Figures 40-45, 46-51, 52-57, and 58-63 show the plots cited above, at time

t/T = 9.0, for K = 6 and Vr = 0.6, 0.7, 1.0, and 1.2, respectively. Figures 64-

69 and 70-75 show the force and vortex plots for the steep-sine oscillations

for K = 4 and Vr = 0.6 and 0.7, respectively. Finally, Figures 76-81 and 82-86

show similar plots for K = 6 and Vr = 0.6 and 0.7, respectively.

The streaklines show that for relatively small values of Vr , the wakes

are on both the upstream and downstream sides of the cylinder and exhibit

highly irregular and often highly stretched vortices. As Vr increases, the

wake begins to occupy more and more, the downstream side of the cylinder

(see Figure 13). The most interesting feature of the flow, however, is not the

position but the shape of the wake. Figure 13 shows that the width of the

wake increases and the vortices begin to arrange themselves along three
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rows. Figures 18-20 for Vr = 0.6, Figures 24-26 for Vr = 0.65, and Figures 30-

32 for Vr = 0.7 show that the wake is comprised of three rows of

heterostrophic vortices. They differ only in detail from one Vr to another in

the narrow range of Vr from about 0.6 to 0.7. At lower Vr values (see

Figures 6-8 for Vr = 0.4 and Figures 12-14 for Vr = 0.5), where the sinusoidal

oscillation is relatively important, the shedding of the vortex couples become

more and more alternating. One pair goes to one side of the cylinder, the

next pair goes to the central street, and the third pair goes to the other side

of the street. Then the events repeat themselves. At higher Vr values,

however, (see Figures 37 for Vr = 0.8) the central vortex pairs become weaker

and fairly stretched out. The vortex pairs rotate and orient themselves as if

they were going to be part of an ordinary Karman vortex street.

The lift coefficient plots show (see Figures 17, 23, 29, and 35) the

increasing asymmetry of the wake with Vr for Vr larger than about 0.7. At

lower Vr values (see Figures 16 and 22) the in-line force coefficient remains

essentially constant and periodic. At larger Vr values (see Figure 34),

however, the in-line force becomes increasingly asymmetrical.

Table 3 and Figure 87 show a comparison of the calculated and

experimental drag and inertia coefficients for K = 4 for representative values

of Vr . The computed values were based on an eighth order polynomial

representation of the radial vorticity gradient. As expected, the inertia

coefficients agree extremely well. As far as the drag coefficients are

concerned, the agreement is not as good, but certainly better than expected

in view of the fact that 0i was 200 in the calculations and about 600 in the

experiments. Nevertheless, the trend of the data is well predicted.
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TABLE 3. COMPARISON OF MEASURED AND CALCULATED FORCE

COEFFICIENTS FOR K = 4 AND VARIOUS VALUES OF V r

Vr: 0.4 0.6 0.8 1.0

C' (exp) 1.9 1.8 1.7 1.5

C' (cal) 1.92 1.86 1.83 1.60

Cu (exp) 0.73 0.85 0.87 0.91

C' (cal) 0.52 0.72 0.86 0.85

Figure 88 is a representative sample of the flow visualization obtained

with K = 4 and Vr = 0.7 at t/T = 20. The symmetric growth and motion of

the vortices are clearly visible. This figure should be compared with Figures

30. The similarity is rather striking in spite of the fact that 1 was 200 in the

calculations and about 650 in the experiments.

As noted previously, the calculations were carried out for larger values

of K in order to determine as to whether the unusual vortex wake seen in

Figures 30-32 is a consequence of a unique combination of K and Vr values

or whether it would occur at any K value as long as Vr is chosen

judiciously. The results have shown that (see Figures 40-63) the three-row

vortex street occurs only for K = 4 in a suitable range of Vr values (about 0.6-

0.7). For example, a comparison of Figures 31 and 49 shows that the wakes

for K = 4 and K = 6 are significantly different for identical values of Vr.
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The calculations through the use of the "steep-sine" oscillation and a

steady current have shown (see Figures 64-86) that the three-row vortex

wake does not occur and that the wake is comprised of a series of relatively

active and inactive vortical regions. The inactive regions result from the

periods of rapid acceleration and the active regions from the time intervals

during which the velocity is nearly steady (see Figure 3). More significantly,

however, figures such as Figure 82 show that the repetitive but non-

sinusoidal nature of the flow causes dramatic changes in the in-line (see

Figures 46 and 82) as well as the transverse force. Parts of the cycle become

"inertia dominated" and parts of the cycle become "drag dominated." Had

the flow been non-repetitive and non-sinusoidal (e.g., Gaussian), the drag

and inertia dominated regions even at hgh K values would have randomly

occurred throughout the history of the motion. It is because of this reason

that it has not been easy to evaluate the ocean data or possible to compare it

with the laboratory data, obtained under idealized conditions. It does not

appear that this situation will change in the near future.
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V. CONCLUSIONS

The investigation reported here warranted the following conclusions:

1. Even the higher order finite difference formulations of the govern-
ing equations based on the vorticity/stream-function formulation of the Navi-
er Stokes equations can be solved for only relatively small Reynolds
numbers. This is primarily due to stability and computer constraints.

2. The numerical experiments with pulsating flows (oscillation plus
steady mean flow) for K = 4 and K = 6 yielded total force coeffIcients in
good agreement with those obtained experimentally.

3. For K = 4 and relative current velocities of about 0.6-0.7, the vorti-
ces shed nearly symmetrically at each cycle and gave rise to a most unusual
three-row vortex street, where each row is comprised of a pair of het-
erostrophic vortices. For relative current velocities larger than about one, the
vortex wake returned to the asymmetric mode, as is encountered in a regular
Karman vortex street.

4. For K larger than about 4, the three-row vortex street did not occur
either for sinusoidally- or non-sinusoidally-oscillating co-existing flow, show-
ing that the three-row vortex wake is indeed quite unique. It remains to be
seen as to whether it occurs at much larger Reynolds numbers (larger P) for
K = 4 and Vr = 0.6-0.7.

5. Extensive flow visualization studies yielded vortex patterns in close
agreement with those predicted numerically at the corresponding relative cur-
rent velocities.

6. The foregoing numerical experiments could not have been possible
had it not been due to the availability of a VAX-3520 and a CRAY supercom-
puter. It is also realized that calculations at higher Reynolds numbers and
for larger numbers of cycles of flow oscillation will require extremely large
CPU times even on a supercomputer.
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APPENDIX

Figure 1. Grid in the Physical Domain
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